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Abstract. We numerically study the statistics of the transport parameters of the system of
disordered chains, mutually coupled by hopping termt � 1. We find that the system can be
described in terms of the random matrix theory witht-dependent ‘symmetry parameter’β. In
the limit t → 0β(t) behaves as∼tα with α ≈ 0.11.

1. Introduction

The application of the random-matrix theory (RMT) [1] enables us to understand many
peculiarities and the most important features of the electronic transport in weakly disordered
mesoscopic systems [2] (for a review see [3]).

Transport properties of disordered system can be expressed in terms of quantitiesz,
defined from the eigenvalues∧i of the matrixT †T (T is the transfer matrix) as∧i = expzi .
In terms ofz, the conductanceg of theN -channel system is given asg =∑N

i cosh−2(zi/2)
[4].

RMT suggests that the parametersz are distributed with probability distribution

Pβ(z1, z2, . . . , zN) = exp−
[∑

i

V (zi)− β
∑
i<j

u(zi, zj )

]
(1)

[2]. In (1), β is the symmetry parameter(β = 1, 2 and 4 for the orthogonal, unitary and
symplectic ensemble, respectively),V (zi) is the one-particle ‘potential’ andu(x, y) is the
‘interaction potential’.

Distribution (1) was originally proposed for studies of weakly disordered systems; in
this limit, it can be derived from the ‘maximum entropy ansatz’ [2] or the Dorokhov–Mello–
Pereyra–Kumar equation [5, 6]. This enabled us to estimate the form of the potentialsV

andu [7]. For weak disorder, it is also successful at describing the insulating regime which
appears in the very long weakly disordered systems [2, 8, 3].

As the distributionP(z) only depends on a small number of parameters, such as the
symmetry parameterβ, mean-free pathl, the number of channelsN and the system sizeL,
it explains successfully the universal transport properties, observed in mesoscopic systems,
as universal conductance fluctuations [7].

The success of distribution (1) at explaining transport in the weak disorder limit inspired
the search of its possible generalization to the more complicated systems [9], and even to
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the description of the metal–insulator transition (MIT) [10]. Of course, in this case some
other system parameters enter distributionP(z); thus, in our previous work [11] we have
found that the growth of the disorder to its critical value causes a change of the potential
V (z) from the quadratic form,V (z) ∼ z2, which is typical for the metallic limit, to the
dimension-dependent behaviourV (z) ∼ zd in the d-dimensional system.

In this paper we discuss another possible generalization of the RMT distribution (1).
Here we present our results of the numerical simulation of distributionP(z) of highly
anisotropic systems and interpret them in the language of RMT.

The transport in anisotropic systems has recently been studied intensively, for example
in the systems of conjugated polymers [12, 13] or in the high-temperature superconductors
[15–17].

We consider a system ofN disordered wires coupled together by weak hopping term.
Typical Hamiltonian of our interest has a form

HA =
N∑
i=1

Hi + t
∑
ii ′
Hii ′ (2)

where

Hi = W
L∑
j=1

εij |ij〉〈ij | +
L∑
j=1

|ij〉〈ij + 1| + c.c.

is the Hamiltonian of theith disordered chain of the lengthL (W measures the strength of
the disorder andε’s are random energies), and

Hii ′ =
L∑
j=1

|ij〉〈i ′j |

is the hopping term between chainsi and i ′; the choice of pairsii ′ defines the topology of
the model. Parametert in (2) defines the strength of the hopping (anisotropy).

Anisotropic systems in the limit oft � 1 have been studied previously with the aim
to describe the MIT [14]. As the critical disorderWc ∝

√
t [16] in the limit t → 0, such

systems enable the analysis of the MIT in the weak disorder limit. In contrast to the previous
works, in this paper we concentrate to the limit of smallt while keeping the strength of the
disorderW constant. This problem cannot be treated by any weak disorder method even
for smallW . Indeed, the small parameterW , used in the weak-disorder expansions (see,
e.g. [18]) should now be replaced byW/t which is� 1 ast → 0.

We study two different regimes: in section 2 we examine how the anisotropy influences
the spectrum of the quasi-one-dimensional (Q1D) systems. We argue that the spectrum can
be described in the framework of RMT, if the parameterβ in (1) is allowed to have non-
integer,t-dependent values. The singular behaviour ofβ(t) in the limit t → 0 is obtained
numerically. In section 3 we study the most simple system of two coupled chains in the
metallic regime. For a given hopping parametert we have found the correspondingβ = β(t)
for which the numerically calculated distribution ofz’s coincides with (1). Concluding
remarks are given in section 4.

2. Quasi-one-dimensional systems

We start our consideration with the Q1D Anderson model, defined on the latticeM ×M ×
L,L� M by Hamiltonian

Hα = W
∑
xyz

εxyz|xyz〉〈xyz| +
∑
[nn]

|xyz〉〈x ′y ′z′|.
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L is assumed to be long enough to assure the self-averaging ofz’s. At the critical point
W = Wc of MIT, the spectrum of the rescaled variablesζi = M

L
zi , has a form

ζi = ζ1

√
1+ ζ1

2
(i − 1) (3)

for i 6 N ∝ M and is system-size independent for a given value ofL/M � 1. The
spectrum (3) has been found numerically [19, 20] and derived from the distribution (1) of
z’s under assumptions that the interaction termu(zi, zj ) = log | coshzi − coshzj | is the
same as in the weak disorder limit, and that the one-particle potentialV (z) behaves as∝ z3

[11]. Numerical data [19] confirmed thatζi ∼ O (1), and that the spectrum ofz’s can be
approximate by product of independent Gaussians

P(z) = constant×
∏
i

exp−W(zi)

with

W(zi) =
(
zi − L

M
ζi

)2

/2σ 2
i (4)

and with varianceσ 2
i ∝ z−1

i .
We now introduce the anisotropy by considering four systems of the sizeM ×M × L,

connected to each other by hopping term∝ t which enables electrons to move from the
surface of one system to the neighbouring one. The spectrum ofz’s depends strongly on
the value of parametert . Evidently, for t = 0, it is fourfold degenerated. Couplingt > 0
removes this degeneracy (figure 1). Whent = 1, the spectrum of the resulting system
must be (after rescalingL→ 2L) identical with (3). Numerical data show that already for
t ≈ 0.1 the resulting spectrum is almost identical to (3).

Figure 1. The spectrum of system of four bars of the cross section 6× 6, coupled together
by small t = 0.01 (M) and t = 0.001 (◦). The unperturbed spectrum(t = 0) is four-times
degenerated; weakt removes this degeneracy.
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The description of the spectrum in the limit of smallt is possible using the Coulomb
gas analogy [2], in whichzi represents positions of charged particles which move in
the potentialV and interact via logarithmic interactionu. The mean values ofzi, LM ζi
represent their stationary positions. Hopping termt causes an additional interaction between
charged particles from neighbouring subsystems. As a whole spectrum behaves as that for
2M×2M×L Q1D system fort → 1, it is reasonable to assume thatt-dependent interactions
have the standard form known from the RMT

u(ziµ, zjν) = β ′
∑

(iµ)6=(jnu)
log | coshziµ − coshzjν | (5)

where µ, ν counts the subsystems. The anisotropyt influences only the value of the
interacting constant. Evidently,β ′ → 1 for t → 1; in the limit of t � 1, however,
the interaction term must be weaker. As the difference1i = ζi+1− ζi for the ‘unperturbed’
system isO(1), it is reasonable to suppose that in the limitt � 1 the additional interaction
influences only the position of ‘particles’, which lie close to each other; it allows us to
neglect the interactionu(ziµ, zjν) for i 6= j andµ 6= ν. Then, the distributionP(z) of all
z’s splits into the form

P({ziµ}) =
∏
i

Pi(ziµ) (6)

where

Pi({ziµ}) = exp−
[∑

µ

W(ziµ)− β ′
∑
µ<ν

u(ziµ, zjν)

]
. (7)

PotentialW(zi) is given by (4) and the interaction potential is of the form (5) withβ ′ = β ′(t).
The distributionPi(ziµ) is (6) can be interpreted as that of the system ofN = 4 chains

coupled together by hopping termt . As we have neglected the interaction termu(ziµ, zjν)
for i 6= j andµ 6= ν, these systems are statistically independent from each other.

Owing to (7), the distribution for each such four-chain system still has the form of (1)
but with t-dependent symmetry parameterβ ′(t). Then, the mutual positionziµ can be found
from the standard RMT:

zn = 2
L

l
× 1+ β ′n− β ′

2+ β ′N − β ′ (8)

where l is the mean-free path [3, 2]. When consideringβ ′ small, we can expand (8) into
the powers ofβ ′, and obtain

zn ≈ z0

(
1+ β

′

2
(2n−N − 1

)
(9)

which explains the shift of each of four originally degenerateζ ’s in figure 1.
To obtain more quantitative data for the small-t behaviour ofβ, we study the system

of only N = 2 coupled disordered chains. Their Hamiltonian is given by (2) withN = 2.
Application of (9) to this simple system gives

z1

z0
− 1= 1− z2

z0
≈ β

2
� 1. (10)

In figure 2 we present data for the differences (10) for two chain problem. Data show
that the degeneracyz1 = z2 = z0 of z’s for t = 0 is quickly removed whent > 0 and the
differencesz2 − z0 and z0 − z1 are approximately equal to each other, which agrees with
(10). Thus, the spectrum of our system follows formula (8) witht-dependent parameterβ.
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Figure 2. t-dependence of|z1(t)/z0 − 1| and |z2(t)/z0 − 1| for very long two-chain system:
L = 50 000,W = 2, averaging over ensemble of 1000 systems has been performed. The full
curve is the power fit∼ t0.11.

By comparing relations (9) with numerical data for the difference1 = z2 − z1 we
observe the singular behaviour of parameterβ in the limit t → 0:

β(t) ∝ tα α ≈ 0.11. (11)

We have found approximately the same value forα for a two-chain systems with different
disorder and energy (figure 3(a)) and also for systems withN = 3 chains.

To check the validity of relation (11) for more complex systems we also studied the
system ofN = 36 channels 6× 6×∞ with hopping= 1 in thex direction and hoppingt
in they direction. In the limitt � 1 this system corresponds to weakly coupled disordered
planes. For the differenceszi+1− zi we found again that

zi+1− zi ∝ tα

with exponentα close to the value refereed in (11) (figure 3(b)).

3. Metallic phase

In this section we consider a system of weakly disordered short chains (short enough to
assure thatz 6 1 in the absence of mutual coupling) and study how the weak coupling
t influences the form of the distributionP(z). On the basis of results of section 2 we
conjecture that the last still has form of (1) but witht-dependent parameterβ.

In contrast to Q1D systems there is no degeneracy inz’s already fort = 0. Instead,
the spectrum ofz’s possesses some rigidity typical for the spectrum of random matrices.
However, it is a purely statistical effect caused by the ordering ofN one-dimensionalz for
each member of the ensemble; the smallest one,z

(N)

1 , is then distributed according to the
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Figure 3. t-dependence of1z for (a) two chains,L = 5 × 104, and different disorder
E = 5, 4, 3, 2, 1 and for energyE = 1, W = 1, (b) Q1D system with cross sections 6× 6 with
anisotropy in one direction of the bar. The full curves are power fits1 ∝ tα with α ≈ 0.11.

distribution

P1(z
(N)

1 ) = N !
∫ ∞

0

∫ ∞
z1

. . .

∫ ∞
zN−1

N∏
i=1

dzi P (zi)δ(z
(N)

1 − z1) (12)

and similar relations can also be written for higherz’s.
P(z) is the distribution ofz in the single channel. For weak disorder, it is almost

identical to Wigner surmises. We can therefore considerP(z) ∝ z exp−z2, after simple
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Figure 4. t-dependence ofy(1) for system 10× 10 and for different values oft (from above:
t = 0, 0.1, 0.2, 0.5, 0.7 and 1.0).

integration we obtain

P1(x) ∝ x exp−π
4
Nx2. (13)

Thus, the mean value ofz1 is smaller by a factor ofN−1/2 in comparison with that for the
one-dimensional chain.

Despite the regularity of the spectra, the statistics ofz’s differs considerably from that
predicted by RMT. Indeed, the distribution of differences1i = zi+1− zi should be close to
the Poissonian distribution; that means that the ratio

y(1i) =
√

var1i/〈1i〉
is close to 1.

Weak couplingt between chains enables particles to hop from one chain to the next
neighbour one and causes the quick decrease ofy(1) to the value≈ 0.522 which is typical
for Wigner surmises. We illustrate this behaviour in figure 4 which presents thet-dependence
of y(1i) for the 10× 10 weakly disordered system.

More quantitative studies have been performed for the most simple system consisting
of only N = 2 chains of the lengthL = 40. The strength of the disorder was chosen such
that the localization length exceedsL. The distributions ofz1 and11 has been calculated
numerically. While the distributionP(z1) exhibits no qualitative changes witht (as we
mentioned above, it is of the form of Wigner surmises already fort = 0), distributionP(1)
changes from a Poissonian to a Wigner distribution ast grows. To describe this crossover
we suppose that the distributionP(z1, z2) has the form

Pβ(z1, z2) = |z2− z1|βz1z2 exp−(z2
1 + z2

2). (14)

Distribution (14) can be obtained from the ‘classical’ RMT distribution (1) in the limit of
small z’s and by appropriate rescaling ofz’s which enable us to avoid parameters such as
the mean value ofz. We suppose that the anisotropy influences only the value of parameter
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Figure 5. t-dependence ofβ for N = 2 coupled chains. Inset: distributionP(1) for t = 0.02
found from numerical simulations, and its comparison with distribution of1 which follows
from (14) forβ = 0.4546.

β. For t = 0 the system splits into two independent chains, so thatβ(t = 0) = 0; and for
t = 1 we supposeβ = 1.

We use distribution (14) to calculate by numerical integration the distributionP(1) of
the difference1 = z2 − z1 for different values ofβ. Then, the comparison of the ratio
yβ(1) with that found from numerical simulation of the two-chain system enables us to find
the t-dependence ofβ in distribution (14). The obtained functionβ(t) is shown in figure 5.
As expected,β grows quickly ast increases; in fact, already fort ≈ 0.1 it is close to its
limiting value. This is consistent with results discussed in section 3.

The inset of figure 5 presents the comparison of the distribution of1 for t = 0.02 with
that calculated from (14) for the corresponding value ofβ = 0.4546.

4. Conclusion

In conclusion, we have studied the role of the anisotropy on the statistical properties of the
system of coupled chains and shown that the statistics of such systems could be described
by a probability distribution similar to that from RMT but with non-integer symmetry
parametersβ. We study the dependence ofβ on the anisotropy parametert . In the limit
t → 0, we found, from the studies of weakly coupled long chains, thatβ ∝ tα with
α ≈ 0.11. The same exponentα also characterizes thet-dependence of differenceszi+1−zi
for system of weakly coupled disordered plains.

In the metallic regime, thet-dependence ofβ has been found from the studies of the
whole distribution of the differencez2−z1 of two-chain system. For larger systems we have
shown that the distributionsP(zi+1− zi) possess the same transition from the Poissonian to
the Wigner statistics as that for the two-chain problem. It is therefore reasonable to suppose
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that theβ(t) relation has qualitatively similar behaviour also for generalN -chain systems.
Present results suggest the possibility of generalizing the random-matrix treatment also

to studies of anisotropic systems. They enable us to also consider another transition from
the metallic into the non-metallic regime; different to previous treatment [10, 11] where the
localized regime has been achieved by appropriate change of the one-particle potential, the
same is achieved just by decrease of parameterβ.

Our consideration provides us also with the possible physical interpretation of the
random-matrix statistics with non-integer ‘symmetry parameter’β.
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