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Abstract. We numerically study the statistics of the transport parameters of the system of
disordered chains, mutually coupled by hopping terrx 1. We find that the system can be
described in terms of the random matrix theory witbependent ‘symmetry parametet’ In

the limit + — 0B(¢) behaves as-t* with o« ~ 0.11.

1. Introduction

The application of the random-matrix theory (RMT) [1] enables us to understand many
peculiarities and the most important features of the electronic transport in weakly disordered
mesoscopic systems [2] (for a review see [3]).

Transport properties of disordered system can be expressed in terms of quantities
defined from the eigenvalues of the matrix77 (T is the transfer matrix) as; = expz;.
In terms ofz, the conductancg of the N-channel system is given gs= Zf\' cosh?(z;/2)
[4].

RMT suggests that the parameterare distributed with probability distribution

Py(z1.22, ... 2n) = exp—[ D V@) =B ul, z,»)] (1)
i i<j
[2]. In (1), B is the symmetry parametép = 1,2 and 4 for the orthogonal, unitary and
symplectic ensemble, respectively(z;) is the one-particle ‘potential’ and(x, y) is the
‘interaction potential’.

Distribution (1) was originally proposed for studies of weakly disordered systems; in
this limit, it can be derived from the ‘maximum entropy ansatz’ [2] or the Dorokhov—Mello—
Pereyra—Kumar equation [5,6]. This enabled us to estimate the form of the poténtials
andu [7]. For weak disorder, it is also successful at describing the insulating regime which
appears in the very long weakly disordered systems [2, 8, 3].

As the distributionP(z) only depends on a small number of parameters, such as the
symmetry paramete#, mean-free patl, the number of channel§ and the system sizg,
it explains successfully the universal transport properties, observed in mesoscopic systems,
as universal conductance fluctuations [7].

The success of distribution (1) at explaining transport in the weak disorder limit inspired
the search of its possible generalization to the more complicated systems [9], and even to
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the description of the metal—insulator transition (MIT) [10]. Of course, in this case some
other system parameters enter distribut®¢); thus, in our previous work [11] we have
found that the growth of the disorder to its critical value causes a change of the potential
V(z) from the quadratic formy (z) ~ z2, which is typical for the metallic limit, to the
dimension-dependent behavioli(z) ~ z¢ in the d-dimensional system.

In this paper we discuss another possible generalization of the RMT distribution (1).
Here we present our results of the numerical simulation of distribufién) of highly
anisotropic systems and interpret them in the language of RMT.

The transport in anisotropic systems has recently been studied intensively, for example
in the systems of conjugated polymers [12,13] or in the high-temperature superconductors
[15-17].

We consider a system a@¥ disordered wires coupled together by weak hopping term.
Typical Hamiltonian of our interest has a form

N
HA=ZHi+IZHii/ )
i=1 i’
where

L
eilijMijl+ Y lij)ij + 1l +c.c.
j=1 j=1
is the Hamiltonian of theéth disordered chain of the lengih (W measures the strength of
the disorder and’s are random energies), and

L
Hyo= Y 1ij)i' |
j=1

is the hopping term between chaihandi’; the choice of pair$i’ defines the topology of
the model. Parameterin (2) defines the strength of the hopping (anisotropy).

Anisotropic systems in the limit of < 1 have been studied previously with the aim
to describe the MIT [14]. As the critical disordé¥, oc 4/t [16] in the limit 1 — 0, such
systems enable the analysis of the MIT in the weak disorder limit. In contrast to the previous
works, in this paper we concentrate to the limit of smalhile keeping the strength of the
disorderW constant. This problem cannot be treated by any weak disorder method even
for small W. Indeed, the small paramet@, used in the weak-disorder expansions (see,
e.g. [18]) should now be replaced /¢ which is>>> 1 ast — 0.

We study two different regimes: in section 2 we examine how the anisotropy influences
the spectrum of the quasi-one-dimensional (Q1D) systems. We argue that the spectrum can
be described in the framework of RMT, if the paramegein (1) is allowed to have non-
integer,z-dependent values. The singular behavioug@f) in the limit ¢+ — 0 is obtained
numerically. In section 3 we study the most simple system of two coupled chains in the
metallic regime. For a given hopping parametere have found the correspondifig= 8(¢)
for which the numerically calculated distribution efs coincides with (1). Concluding
remarks are given in section 4.

L
H =W

2. Quasi-one-dimensional systems

We start our consideration with the Q1D Anderson model, defined on the |MtigeM x
L, L > M by Hamiltonian

Hy =W eqclxyzdxyzl + ) leya)(x'y'2/l.

xyz [nn]
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L is assumed to be long enough to assure the self-averagint.ofAt the critical point
W = W, of MIT, the spectrum of the rescaled variablgs= %z,-, has a form

b=+ 26— ®

for i < N o« M and is system-size independent for a given valud.p#/ > 1. The
spectrum (3) has been found numerically [19, 20] and derived from the distribution (1) of
z's under assumptions that the interaction te¥fa;, z;) = log|coshz; — coshz;| is the
same as in the weak disorder limit, and that the one-particle poténtialbehaves asc z°

[11]. Numerical data [19] confirmed thgt ~ O (1), and that the spectrum efs can be
approximate by product of independent Gaussians

P(z) = constantx | [ exp—W(z:)
with
W(z) = LY 207 4
Zj) = <Zi - M§i> /20; )

and with variancer? oc z; %,

We now introduce the anisotropy by considering four systems of theigizeM x L,
connected to each other by hopping testhv which enables electrons to move from the
surface of one system to the neighbouring one. The spectrusis afepends strongly on
the value of parametet Evidently, fort = 0, it is fourfold degenerated. Coupling> 0
removes this degeneracy (figure 1). When- 1, the spectrum of the resulting system
must be (after rescalingg — 2L) identical with (3). Numerical data show that already for
t ~ 0.1 the resulting spectrum is almost identical to (3).
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Figure 1. The spectrum of system of four bars of the cross section@ coupled together
by smallr = 0.01 (1) andr = 0.001 (O). The unperturbed spectrum = 0) is four-times
degenerated; weakremoves this degeneracy.
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The description of the spectrum in the limit of smalls possible using the Coulomb
gas analogy [2], in whichg; represents positions of charged particles which move in
the potentialV and interact via logarithmic interactiom. The mean values of;, %;“,»
represent their stationary positions. Hopping tercauses an additional interaction between
charged particles from neighbouring subsystems. As a whole spectrum behaves as that for
2M x2M x L Q1D system for — 1, it is reasonable to assume thatependent interactions
have the standard form known from the RMT

(g, zp) =B ) log] coshe;, — coshe;,| )
(Ip)F#(nu)

where u, v counts the subsystems. The anisotrapinfluences only the value of the
interacting constant. Evidentlhy’ — 1 for r — 1; in the limit of t+ <« 1, however,
the interaction term must be weaker. As the differenge= ¢; ., — ¢; for the ‘unperturbed’
system isO(1), it is reasonable to suppose that in the limik 1 the additional interaction
influences only the position of ‘particles’, which lie close to each other; it allows us to
neglect the interaction(z;,, z;,) for i # j andu # v. Then, the distributionP(z) of all
z’s splits into the form

P({zih) = [ Pitzin) (6)
where

Pi({ziu)) = exp—[z W (zin) — B
w

Zu(ziuvzjv):|' (7)
n<v
PotentialW (z;) is given by (4) and the interaction potential is of the form (5) vdith= g'(z).

The distributionP; (z;,,) is (6) can be interpreted as that of the systenvof 4 chains
coupled together by hopping term As we have neglected the interaction tewa;,., z;,)
fori # j andu # v, these systems are statistically independent from each other.

Owing to (7), the distribution for each such four-chain system still has the form of (1)
but with -dependent symmetry paramefg(s). Then, the mutual positiog,, can be found
from the standard RMT:

L 14+pn-8
=2 X 8
“TE 24 pN =P ©)
where! is the mean-free path [3,2]. When considerifigsmall, we can expand (8) into
the powers off’, and obtain

an10(1+'62(2n—N—1> 9)

which explains the shift of each of four originally degeneratin figure 1.

To obtain more quantitative data for the smalbehaviour of8, we study the system
of only N = 2 coupled disordered chains. Their Hamiltonian is given by (2) with- 2.
Application of (9) to this simple system gives

ﬁ_1=1_izé <1 (10)

20 20 2
In figure 2 we present data for the differences (10) for two chain problem. Data show
that the degeneracy, = z, = zg of z's for t = 0 is quickly removed whem > 0 and the
differencesz, — zp and zg — z1 are approximately equal to each other, which agrees with
(10). Thus, the spectrum of our system follows formula (8) wittependent parametgr.



The statistics of transport parameters 149

0.070

0.065

0.060

0.055

z(t)/2(0)—1

0.050

st a e das e qp e lae s e p ey brrera ot v b rrireeagd

0.045 IllI;lllIllllllIIll;llllllllt|lllllllll‘lllllll!l
0.0 0. 0.4 0.6

10%

Figure 2. r-dependence ofz1(¢)/zo — 1| and |z2(¢)/zo — 1| for very long two-chain system:
L =50000,W = 2, averaging over ensemble of 1000 systems has been performed. The full
curve is the power fitv 1011,

By comparing relations (9) with numerical data for the difference= z, — z1 we
observe the singular behaviour of parameten the limit t — O:

B@) ot a~ 011 (11)

We have found approximately the same valueddior a two-chain systems with different
disorder and energy (figure&) and also for systems witlv = 3 chains.

To check the validity of relation (11) for more complex systems we also studied the
system ofN = 36 channels & 6 x oo with hopping= 1 in thex direction and hopping
in the y direction. In the limitt <« 1 this system corresponds to weakly coupled disordered
planes. For the differences,; — z; we found again that

Zigl — Zi o t”

with exponentx close to the value refereed in (11) (figurdoB(

3. Metallic phase

In this section we consider a system of weakly disordered short chains (short enough to
assure that < 1 in the absence of mutual coupling) and study how the weak coupling
¢t influences the form of the distributio®(z). On the basis of results of section 2 we
conjecture that the last still has form of (1) but wittdependent parametgr.

In contrast to Q1D systems there is no degeneracysmalready forr = 0. Instead,
the spectrum ot’s possesses some rigidity typical for the spectrum of random matrices.
However, it is a purely statistical effect caused by the orderingy afne-dimensionat for
each member of the ensemble; the smallest ofl€, is then distributed according to the
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Figure 3. t-dependence ofAz for (a) two chains,L = 5 x 10*, and different disorder
E =5,4,3,2,1 and for energyt =1, W = 1, (b) Q1D system with cross sections<6 with
anisotropy in one direction of the bar. The full curves are powerAits * with o ~ 0.11.

distribution

00 0 oo N
Pi(z;") = N! / / / [Td: PesG" -z (12)
0 21 z

N-1j=1

and similar relations can also be written for higheés.
P(z) is the distribution ofz in the single channel. For weak disorder, it is almost
identical to Wigner surmises. We can therefore consifler) o z exp—z2, after simple
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Figure 4. t-dependence of(A) for system 10x 10 and for different values of (from above:
+=0,0.1,0.2,05,0.7 and 1.0).

integration we obtain
Pi(x) o< x eXp—%Nxz. (13)

Thus, the mean value af is smaller by a factor oV ~%/2 in comparison with that for the
one-dimensional chain.

Despite the regularity of the spectra, the statisticg’sfdiffers considerably from that
predicted by RMT. Indeed, the distribution of differena®s= z; 1 — z; should be close to
the Poissonian distribution; that means that the ratio

y(4A;) = varh; /(A;)

is close to 1.

Weak couplingr between chains enables particles to hop from one chain to the next
neighbour one and causes the quick decreaséaj to the valuex~ 0.522 which is typical
for Wigner surmises. We illustrate this behaviour in figure 4 which presentsdapendence
of y(A;) for the 10x 10 weakly disordered system.

More quantitative studies have been performed for the most simple system consisting
of only N = 2 chains of the lengtli. = 40. The strength of the disorder was chosen such
that the localization length exceeds The distributions of; and A; has been calculated
numerically. While the distributionP(z;) exhibits no qualitative changes with(as we
mentioned above, it is of the form of Wigner surmises already fer0), distributionP (A)
changes from a Poissonian to a Wigner distribution gsows. To describe this crossover
we suppose that the distributidi(z, z) has the form

Ps(z1,22) = |22 — 21/’ z1z0€Xp— (2§ + 22). (14)

Distribution (14) can be obtained from the ‘classical’ RMT distribution (1) in the limit of
smallz's and by appropriate rescaling ofs which enable us to avoid parameters such as
the mean value of. We suppose that the anisotropy influences only the value of parameter



152 P Markos
1.0

0.8

0.6

beta(t)

P(delta)

4

0N 0T VO W 00 O O 0 YOO O VO 0 O O Y O OO O O O O O 0 O S 20 0 O S O O A
o
o

delta

O TTTI TP T T rTTTTTT LI A A I IO I O O O

.0
0.00 0.02 0.04 %.06 0.08 0.10

Figure 5. t-dependence of for N = 2 coupled chains. Inset: distributiaP(A) for + = 0.02
found from numerical simulations, and its comparison with distributiorAofvhich follows
from (14) for p = 0.4546.

B. Fort = 0 the system splits into two independent chains, so fitat= 0) = 0; and for
t =1 we supposes = 1.

We use distribution (14) to calculate by numerical integration the distribution) of
the differenceA = z, — z; for different values ofg. Then, the comparison of the ratio
yg(A) with that found from numerical simulation of the two-chain system enables us to find
thet-dependence of in distribution (14). The obtained functigh(z) is shown in figure 5.
As expected grows quickly ast increases; in fact, already for~ 0.1 it is close to its
limiting value. This is consistent with results discussed in section 3.

The inset of figure 5 presents the comparison of the distributiof &dr + = 0.02 with
that calculated from (14) for the corresponding valugset 0.4546.

4. Conclusion

In conclusion, we have studied the role of the anisotropy on the statistical properties of the
system of coupled chains and shown that the statistics of such systems could be described
by a probability distribution similar to that from RMT but with non-integer symmetry
parameterg. We study the dependence gfon the anisotropy parameter In the limit

t — 0, we found, from the studies of weakly coupled long chains, thak * with

o ~ 0.11. The same exponeatalso characterizes thedependence of differences, 1 — z;

for system of weakly coupled disordered plains.

In the metallic regime, the-dependence of has been found from the studies of the
whole distribution of the difference, — z; of two-chain system. For larger systems we have
shown that the distribution®(z;.1 — z;) possess the same transition from the Poissonian to
the Wigner statistics as that for the two-chain problem. It is therefore reasonable to suppose
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that theg () relation has qualitatively similar behaviour also for genevathain systems.

Present results suggest the possibility of generalizing the random-matrix treatment also
to studies of anisotropic systems. They enable us to also consider another transition from
the metallic into the non-metallic regime; different to previous treatment [10, 11] where the
localized regime has been achieved by appropriate change of the one-particle potential, the
same is achieved just by decrease of paramgter

Our consideration provides us also with the possible physical interpretation of the
random-matrix statistics with non-integer ‘symmetry parameger’
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